Одномерный, двумерный, трехмерный
Страница 1

Нервное волокно, у которого длина намного больше диаметра, можно считать одномерной возбудимой средой, тонкую ткань предсердия — двумерной. Двумерные возбудимые ткани могут иметь разную топологию: например, у асцидий сердце представляет собой трубку, образованную одним слоем клеток; можно считать, что это двумерная возбудимая среда, образующая цилиндр. Синцитии, рассмотренные выше, топологически эквиваленты плоскости.

В «одномерном» нервном волокне импульс может идти только в одном направлении. В двумерных синцитиях возбуждение распространяется во все стороны, образуя фронт волны, подобно кругам на воде, разбегающимся от брошенного камня.

Такие волны возбуждения все время бегут по сердцу. Они возникают в специальном ведущем узле, пробегают по предсердию, а потом медленно ползут по синцитию, лежащему на границе между предсердием и желудочком. Эта «линия задержки» необходима, чтобы предсердие успело выбросить кровь в полость желудочка. Потом возбуждение переходит с «линии задержки» на проводящую систему, которая быстро возбуждает весь желудочек.

Форма фронта волны в возбудимых средах, как и в случае обычных физических волн, зависит от скорости распространения возбуждения. Если среда изотропна, волны будут круговые. Но скорость возбуждения в синцитии сильно зависит от его геометрии; например, в таком синцитии,, как на рис, 49г а, при распространении в горизонтальном направлении вдоль волокон скорость велика, а при распространении в вертикальном направлении токи в каждом узле ветвления перетекают в длинные боковые перемычки, и это снижает скорость проведения. Расчеты, проведенные на ЭВМ сотрудницей Института проблем передачи информации АН СССР Т.А. Шура-Бура, показали, что за счет такой организации сети скорость возбуждения может быть снижена на порядок. Такой анизотропный синцитий и образует «линию задержки» между предсердием и желудочком.

Свойства возбудимых тканей определяют и ряд других важных особенностей волн возбуждения. Например, если по синцитию идет волна с искривленным передним фронтом, то фронт сам собой выравнивается, так как вогнутые его участки распространяются быстрее, чем выпуклые. Другой пример: если механическая волна наталкивается на препятствие, она может отразиться и пойти обратно. С волной возбуждения такого случиться не может: сразу же за волной идет участок рефрактерности. Поэтому импульс, идущий по волокну, дойдя до его конца, исчезает.

Теперь представим себе, что у нас есть «кусок» двумерной возбудимой среды с отверстием. Пусть нам удалось запустить в нем волну возбуждения только в одном направлении, как показано на рис. 50, а. Если отверстие достаточно велико, то возбуждение, обойдя его и вернувшись в исходное положение, застанет ткань уже вышедшей из состояния рефрактерности и вновь побежит по тому же пути. Длина границы отверстия1 очевидно, должна быть не меньше скорости волны, умноженной на длительность рефрактерного периода, тогда волна будет все время бегать по возбудимой среде.

Еще в начале нашего века была высказана гипотеза, что именно таким круговым движением волны объясняется опасное нарушение сердечного ритма — фибрилляция предсердий. По этой гипотезе круговая волна не дает распространяться обычной нормальной волне возбуждения и нарушает сокращения сердечной мышцы.

Изучением фибрилляции занимались многие ученые. Создатель кибернетики Н. Винер совместно с мексиканским физиологом А. Розенблютом предложили в 1946 г, первую математическую модель двумерной возбудимой среды и начали рассматривать разные режимы распространения возбуждения в ней. В этих первых моделях еще никак не учитывались физическая природа распространяющихся волн и свойства синцитиальных тканей. В начале 60-х годов И.М. Гельфанд и М.Л. Цетлин на своем физиологическом семинаре рассмотрели более сложную модель, приняв, что в такой возбудимой среде имеются клетки, способные самопроизвольно возбуждаться с разными периодами. Участник того же семинара И.С. Балаховский показал, что в двумерной возбудимой среде может возникнуть непрерывно крутящаяся спираль, даже если в среде нет отверстия.

Страницы: 1 2


Рекомендуем к прочтению:

Описание
По Пигулевскому, 1952. Форма тела взрослого гельминта веретеновидная, с более узким передним и тупо закругленным задним концом. Средняя часть тела на уровне передних семенников умерена расширена. Тело несколько уплощено в дорсо-вентрально ...

Вид. Структура и критерии вида
Вид — совокупность популяций особей, обладающий наследственным сходством морфофизиологических признаков, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к сходным условиям жизни и занимающих определенный ареал. Виды ...

Синтез митохондриальных белков
В митохондриях клеток высших организмов содержится до 2% клеточной ДНК, отличающейся от ДНК ядра. Митохондрии содержат весь аппарат, включая рибосомы, тРНК и мРН К, необходимый для синтеза определенных белков. Синтезируемые в митохондриях ...