Динамические и статистические закономерности в природе
Страница 9

Биология » Динамические и статистические закономерности в природе

Существует точка зрения, что второй закон термодинамики не применим к живым системам, так как они не являются замкнутыми системами. Живые системы — это открытые системы. Энтропия живых молекул весьма низка и имеет тенденцию к понижению. Этот факт сегодня является общепризнанным, а ее асимметрия не есть состояние нарушения равновесия, отсутствия структурности или беспорядка, а есть состояние динамического равновесия и упорядоченности, более сложной структурности и более высокого энергетического уровня. Это то самое крайне маловероятное состояние, которое заставляет усомниться в абсолютности знания. Возрастание энтропии и говорит о необходимости поиска новой физической теории или биологической закономерности, описывающей это состояние.

В мировом процессе развития принцип минимума диссипации энергии играет особую роль. Суть его: если допустимо не единственное состояние системы, а целая совокупность состояний, согласных с законами сохранения и принципами, а также связями, наложенными на систему, то реализуется то состояние, которому соответствует минимальное рассеивание энергии, или, что то же самое, минимальный рост энтропии («рыба ищет, где глубже, а человек — где лучше»).

Принцип минимума диссипации энергии является частным случаем более общего принципа «экономии энтропии».

В природе все время возникают структуры, в которых энтропия не только не растет, но и локально уменьшается. Этим свойством обладают многие открытые системы, в том числе и живые, где за счет притока извне вещества и энергии возникают так называемые квазистационарные (стабильные) состояния.

Таким образом, если в данных конкретных условиях возможны несколько типов организации материи, согласующихся с другими принципами отбора, то реализуется та структура, которой соответствует минимальный РОСТ энтропии. Так как убывание энтропии возможно только за счет поглощения внешней энергии, то реализуются те из возможных форм организации материи, которые способны в максимальной форме поглощать энергию.

Область применения принципа минимума диссипации энергии непрерывно расширяется. На протяжении всей истории человечества стремление овладеть источниками энергии и вещества было одним из важнейших стимулов развития и устремления человеческих интересов. И поэтому всегда было источником разнообразных конфликтов.

По мере развертывания научно-технического прогресса, истощения природных ресурсов возникает тенденция к экономному расходованию этих ресурсов, возникновению безотходных технологий, развитию производства, требующего небольших энергозатрат и материалов.

Если говорить об иерархии принципов отбора, то он играет роль как бы завершающего, замыкающего принципа: когда другие принципы не выделяют единственного устойчивого состояния, а определяют целое их множество, то этот принцип служит дополнительным принципом отбора. Проблема экономии энтропии, этой меры разрушения организации и необратимого рассеяния энергии, решается в мире живой природы. Существует теорема о минимуме воспроизводства энтропии, которая утверждает, что производство энтропии системой, находящейся в стационарном состоянии, достаточно близком к равновесному состоянию, минимально. Этот принцип можно рассматривать в качестве универсального. В живом веществе он проявляется не как закон, а как тенденция. В живой природе противоречие между тенденцией к локальной стабильности и стремлением в максимальной степени использовать внешнюю энергию и материю является одним из важнейших факторов создания новых форм организации материального мира.

Страницы: 4 5 6 7 8 9 10


Рекомендуем к прочтению:

Дрожжи в современной биотехнологии
Дрожжи как источник белка Использование микробной биомассы для обогащения кормов белком и незаменимыми аминокислотами в условиях интенсивного животноводства - одна из важных проблем будущего, так как человечество развивается таким образо ...

Хлор
С поваренной солью в организм человека поступает и хлор. Суточная потребность в нем составляет примерно 5 г. Физиологическое значение этого элемента связано с его участием в регуляции водно-солевого обмена и осмотического давления в тканя ...

Роль белков и липидов в жизнедеятельности водорослей. Белки и липиды
Белки и липиды являются важными структурными, запасными и функциональными элементами клетки. Азотфиксация и биосинтез аминокислот. Синезеленые водоросли используют в качестве источника азота самые разнообразные соединения — минеральные, ...