Динамические и статистические закономерности в природе (детерминизм процессов природы).
Страница 1

Биология » Наука как процесс познания. Динамические и статистические закономерности в природе » Динамические и статистические закономерности в природе (детерминизм процессов природы).

Детерминизм

в современной науке определяется как учение о всеобщей, закономерной связи явлений и процесс окружающего мира. Наличие таких связей является доказательством материального единства мира и существования мире общих закономерностей. Очень часто детерминизм отождествляется с причинностью, но такой взгляд нельзя считать правильным хотя бы потому, что причинность выступает как одна из форм проявления детерминизма.

Законы, с которыми имеет дело классическая механика, имеют универсальный характер, т. е. они относятся ко без исключения изучаемым объектам природы. Отличительная особенность такого рода законов состоит в том, что предсказания, полученные на их основе, имеют достоверный и однозначный характер. Наиболее ярко они проявились после того, как на основе закона всемирного тяготения, изложенного И. Ньютоном в 1671 г. в "Математических началах натуральной философии", и законов механики возникла небесная механика. На основе законов небесной механики были вычислены отклонения в движении Урана, вызванные возмущаю­щим влиянием неизвестной тогда планеты. Определив вели­чину возмущения, независимо друг от друга по законам ме­ханики положение неизвестной планеты рассчитали Д.

Адамс и У. Леверье. Всего на угловом расстоянии в 1° от рассчитанного ими положения И. Галле обнаружил планету Нептун. Открытие Нептуна блестяще подтвердило справед­ливость законов небесной механики и наличие в природе од­нозначных причинных связей. Это позволило французскому механику П. Лапласу сказать: дайте мне начальные условия и

я, с помощью законов механики, предскажу дальнейшее развитие событий. Это вошло в историю как лапласовый, или механистический детерминизм, который допускает од­нозначные причинные связи в явлениях природы.

Наряду с ними в науке с середины XIX в. стали все шире применяться законы другого типа. Их предсказания не явля­ются однозначными, а только вероятностными. Вероятност­ными они называются потому, что заключения, основанные на них, не следуют логически из имеющейся информации, а потому не являются достоверными и однозначными. Инфор­мация при этом носит статистический характер, законы, вы­ражающие эти процессы, называются статистическими за­конами, и этот термин получил в науке большое распространение.

В классической науке статистические законы не призна­вали подлинными законами, так как ученые в прошлом пред­полагали, что за ними должны стоять такие же универсаль­ные законы, как закон всемирного тяготения Ньютона, который считался образцом детерминистического закона, поскольку он обеспечивает точные и достоверные предска­зания приливов и отливов, солнечных и лунных затмений и других явлений природы. Статистические же законы при­знавались в качестве удобных вспомогательных средств исследования, дающих возможность представить в компактной и удобной форме всю имеющуюся информацию о каком-либо предмете исследования. Подлинными законами считались именно детерминистические законы, обеспечивающие точ­ные и достоверные предсказания. Эта терминология сохра­нилась до настоящего времени, когда статистические, или вероятностные, законы квалифицируются как индетерминистические, с чем вряд ли можно согласиться.

Отношение к статистическим законам принципиально изменилось после открытия законов квантовой механики, предсказания которых имеют существенно вероятностный характер.

Таким образом, исторически детерминизм выступает в

двух следующих формах:

1) лапласовый, или механистический, детерминизм, в ос­нове которого лежат универсальные законы классической физики;

2) вероятностный детерминизм, опирающийся на статис­тические законы и законы квантовой физики.

В динамических теориях явления природы подчиняются однозначным (динамическим) закономерностям, а статистические теории основаны на объяснении процессов вероятностными (статистическими) закономерностями. К динамическим теориям относятся классическая механика (создана в XVII-XVIII вв.), механика сплошных сред, т. е. гидродинамика (XVIII в.), теория упругости (начало XIX в.), классическая термодинамика (XIX в.), электродинамика (XIX в.), специальная и общая теория относительности (начало ХХ в). К статистическим теориям относятся статистическая механика (вто­рая половина XIX в.), микроскопическая электродинамика ­(начало ХХ в.), квантовая механика (первая треть ХХ в.) ­Таким образом, XIX столетие получается столетием динамических теорий; ХХ столетие - столетием статистичес­ких теорий. Значит, динамические теории соответствовали первому этапу в процессе познания природы человеком, тог­да как на следующем этапе главную роль стали играть ста­тистические теории.

Страницы: 1 2


Рекомендуем к прочтению:

Род клён. Клен ложнозибольдов — Acer pseudosieboldianum Pax
Встречается в Приморье, Северо-Восточном Китае и Корее. Небольшое стройное дерево до 8 м высотой, с густой шатровидной, неправильной кроной. Кора ствола светло-серая, у молодых побегов красноватая или зеленоватая, с сизым налетом. Почки ...

Биология уссурийского кабана. Систематическое положение
Из-за сравнительного многочисленного подотряда Nonruminantia (животные) отряд Artiodactula (парнокопытные) широко распространены на земле, в доледниковую эпоху, до наших дней сохранилось лишь одно семейство так называемые настоящие свиньи ...

Модуляторы. Модуляторы митоКАТФ канала. Метаболические модуляторы митоКАТФ канала
В связи с выраженным кардиопротекторным действием активаторов митоКАТФ в настоящее время во многих лабораториях ведется поиск новых синтетических активаторов канала, которые могут быть потенциальными кардиопротекторами [Ockaili et al., 20 ...