Неравновесная термодинамика. Рождение синергетики
Страница 3

Биология » Концепции современного естествознания » Неравновесная термодинамика. Рождение синергетики

· Точечный аттрактор;

· Циклический (круговой) аттрактор;

· аттрактор Торас;

· Странный аттрактор.

Точечный аттрактор – аттрактор первой размерности – это простейший способ привнести порядок в хаос. Он живет в первом измерении линии, которая составлена из бесконечного числа точек. Он характеризуется как некая устремленность. Так, в человеческом поведении Точечный аттрактор создает психологическую фиксацию на одном желании (или нежелании), и все остальное откладывается до тех пор, пока не будет удовлетворено (уничтожено) это желание.

Циклический аттрактор живет во втором измерении плоскости, которая состоит из бесконечного числа линий. Им характеризуется рынок, заключенный в коридор, где цена движется вверх и вниз в определенном диапазоне в течение некоторого промежутка времени. Этот аттрактор более сложен и является структурой для более сложного поведения.

Аттрактор Торас – еще более сложный аттрактор. Он начинает сложную циркуляцию, которая повторяет себя по мере движения вперед. По сравнению с двумя предыдущими аттрактор Торас вводит большую степень беспорядочности, и его модели более сложны. Графически он выглядит как кольцо или рогалик, он образует, спиралевидные круги на ряде различных плоскостей и иногда возвращается к себе, завершая полный оборот. Его основная черта – это повторяющееся действие.

Странный аттрактор из четвертого измерения. То, что поверхностный взгляд воспринимает как абсолютный хаос, в котором не заметно никакого порядка, имеет определенный порядок, базирующийся на Странном аттракторе. Его можно увидеть, только если наблюдение ведется из четвертого измерения. Его можно представить как множество пульсирующих линий в трехмерном пространстве, подобных вибрирующим струнам. Четырехмерность Странного аттрактора получается за счет добавления пульсаций (вибраций). Важнейшей характеристикой Странного аттрактора является чувствительность к начальным условиям («Эффект бабочки»). Малейшее отклонение от начальных условий может привести к огромным различиям в результате.

Вильямс утверждает, что, когда мы находимся под действием первых трех аттракторов, нами манипулируют, и мы становимся предсказуемыми. Только в динамике Странного аттрактора мы можем быть действительно свободными. Странный аттрактор организует прекрасный мир спонтанности и свободы.

Для описания сложных систем была создана новая геометрия. В 1975 г. Бенуа Мандельброт ввел понятие фрактал (от лат. – расколотый) для обозначения нерегулярных, но самоподобных структур. Возникновение фрактальной геометрии связано с выходом в 1977 г. книги Мандельброта «Фрактальная геометрия природы». Он писал: «Фракталом называется структура, состоящая из частей, которые в чем-то подобны целому».

Фрактальная геометрия «увидела» парадоксы, поставившие в тупик многих математиков XX века. Это и парадокс «береговой линии», парадокс «снежинка» и др.

Что это за необыкновенная «снежинка»? Представим себе равносторонний треугольник. Мысленно разделим каждую его сторону на три равные части. Уберем среднюю часть на каждой стороне и вместо нее приставим равносторонний треугольник, длина стороны которого составляет одну треть от длины исходной фигуры. Получим шестиконечную звезду. Она образована уже не тремя отрезками определенной длины, а двенадцатью отрезками длиной в три раза меньше исходной. И вершин у нее уже не три, а шесть. Повторим эту операцию вновь и вновь, число деталей в образуемом контуре будет расти и расти. Изображение приобретает вид снежинки. Связная линия, составленная из прямых (или криволинейных) участков и названная кривой Коха, обладает целым рядом особенностей. Прежде всего, она представляет собой непрерывную петлю, никогда не пересекающую саму себя, так как новые треугольники на каждой стороне достаточно малы и поэтому не сталкиваются друг с другом. Каждое преобразование добавляет немного пространства внутри кривой, однако ее общая площадь остается ограниченной и фактически лишь незначительно превышает площадь первоначального треугольника. И, кроме того, кривая никогда не выйдет за пределы окружности, описанной около него. Кривая Коха бесконечной длины теснится в ограниченном пространстве! При этом она представляет собой уже нечто большее, чем просто линия, но все же это еще не плоскость.

Страницы: 1 2 3 4


Рекомендуем к прочтению:

Влияние половых гормонов на кардиоваскулярную стресс-реактивность у крыс
Исследования роли половых гормонов в обеспечении половых различий в чувствительности ССС к стрессам проводились на гонадэктомированных самках и самцах крыс. Дефицит половых гормонов вызывал значительные изменения в исходных и стрессорных ...

Семейство Водосвинковые (Hydrochoeridae)
К семейству относится всего два вида. КАПИБАРА (Hydrochoerus capybara) известна зоологам как самый крупный в мире грызун. В Европе его называют водосвинкой, но на родине, в Южной и Центральной Америке, этот грызун называется капибара, а ...

Человеческий мозг и компьютер
Сравнение человеческого мозга с электронным компьютером несостоятельно еще по двум обстоятельствам. Во-первых, мозг по сравнению с детерминированной памятью компьютера не является закрытой системой. Мозг человека, как и его организм в цел ...