Роль белков и липидов в жизнедеятельности водорослей. Белки и липиды
Страница 3

Биология » Роль белков и липидов в жизнедеятельности водорослей » Роль белков и липидов в жизнедеятельности водорослей. Белки и липиды

Глутомат синтеза у А. cylindrica локализована в основном в вегетативных клетках, а глутаминосинтетаза — в клетках и гетероцистах. Эти данные, а также опыты с мечеными аммонием и глутамином дают основание полагать, что именно глутамин, а возможно, и аммоний являются переносчиками вновь фиксированного азота из гетероцист в вегетативные клетки. Глутамат переносится из вегетативных клеток в гетероцисты и превращается в аланин, аспарагиновую кислоту, серии.

Другим путем поглощения аммония (например, у Nostos sp.) является орнитиновый цикл, где С02 включается прежде всего в цитруллин, который затем превращается в аспарагин.

Добавление аммония в среду с зеленой водорослью Botryococcus braunii, являющейся продуцентом терпеноидов и жирных кислот, приводит почти к полному ингибированию синтеза терпеноидов и других нерастворимых метаболитов. Вместе с тем в этих условиях наблюдается значительная стимуляция синтеза аланина, глутамина и других аминоксилот, особенно аминолевулиновой кислоты. При добавлении аммония к клеткам, находящимся в темноте, наступает усиленное включение меченого углерода в соединения, образуемые при карбоксилировании фосфоенолпирувата, такие, как глутамин, глутамат и малат. Полученные данные рассматриваются как указание на то, что в присутствии аммония ацетил-КoA — ключевой метаболит, используемый в синтезе углеводородов, перестает включаться в последовательность реакций, приводящих к образованию терпеноидов.

На примере безгетероцистного неазотфиксирующего мутанта Nostoc muscorum изучена способность к использованию а-изомеров 21 аминокислоты в качестве источников азота и углерода при блокировании фотосинтетической ассимиляции СО2. Глутамат, аланин, тирозин и цистеин — токсичны; глутамин, гистидин, аспарагин, триптофан и серии используются в качестве источников азота, аланин, пролин и фенилаланин — в качестве источника углерода, лейцин, изолейцин, лизин, метионин, валин, цитруллин — в качестве источников углерода и азота; аспартат, треонин и глицин не служат ни источником углерода, ни азота.

Следует отметить, что накопление белка и незаменимых кислот в определенной степени связано с влиянием источника освещения. В опытах при облучении Chlorella vulgaris синим светом 2400 лк содержание белка повышается на 21—30 %. Высшие водоросли при красном свете содержат белка на 15 % меньше, чем при флуоресцентном. Качественный состав аминокислот также зависит от спектрального состава света. При выращивании этой водоросли на флуоресцентном свету в белках наблюдается больше лизина и аргинина. Указанное свойство белков используют для получения биомассы водорослей. В этой связи следует назвать съедобную синезеленую нитчатую водоросль Spirulina maxima, содержащую большое количество протеина, включающего метионин, триптофан и другие аминокислоты в концентрациях, равных содержащимся в казеине молока. Названная водоросль образует 50 т сухой массы в год на 1 га, содержащей 35 % сырого протеина, т. е. в 10 раз больше, чем образует его соя. Водоросль легко переваривается, так как в ее клеточных стенках отсутствует целлюлоза.

Биосинтез аминокислоты лизина у грибов, как отмечалось, осуществляется двумя путями. Эти же пути характерны и для водорослей в зависимости от степени их эволюционного развития; через диаминопимелиновую кислоту, как у синезеленых водорослей, или через аминоадипириновую кислоту, как у эвгленовых водорослей. Определены также биосинтетические семейства аминокислот — их предшественники, аминокислоты из которых синтезируют другие аминокислоты. Выявлено, что рост стерильных культур зеленых водорослей Chlorella, Scenedesmus, Coelastrum и Chlorococcum в среде, содержащей NО2-, сопровождается выделением N2О. Образование N2О не связано с фотохимическим превращением NО2- и наблюдается только в интактных клетках водорослей. Процесс этот не ингибируется диуроном, а в случае двух представителей семейства Chlarophyceae он стимулируется в присутствии глюкозы, особенно в темноте, т. е. О2 может включаться в регуляцию выделения N2О. Следовательно, водоросли, очевидно, являются основными продуцентами N2О в водных экосистемах.

Страницы: 1 2 3 


Рекомендуем к прочтению:

Образование коралловых рифов и их характеристика как экосистемы
Медузы, образующиеся на гидрантах, называются гидроидными; тело их, обычно с ясно выраженной лучевою симметрией, имеет вид колокола, из центра вогнутой стороны которого свешивается длинный желудочный стебелек, на конце которого ротовое от ...

Черное море
Черное море представляет собой глубоководный бассейн с относительно круглыми склонами. Многие думают, что в Черном море сразу же от берега начинается резкое понижение дна, а там, где ходят хорошо видимые с берега глиссеры и катера (пример ...

Продукт одного вида как субстрат для другого
В условиях класса IIб (табл. 1) роль лимитирующего субстрата для одного вида играет продукт, образуемый другим видом. Примером может служить рост пропионовокислых бактерий на молочной кислоте, полученной при росте стрептококков на лактозе ...